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SUMMARY 

 
 
It is common practice to summarize the skill of weather forecasts from an accumulation 

of samples spanning many locations and dates.  In calculating many of these scores, there 

is an implicit assumption that the climatological frequency of event occurrence is 

invariant over all samples.  If the event frequency actually varies among the samples, 

then the scores may report positive skill even when individual forecasts are random 

draws from the local climatology and the metric would commonly be assumed to report 

zero skill. The greater the difference in climatological event frequency between samples, 

the larger the reported skill, irrespective of the quality of the forecast.  Similarly, if the 

climatological event frequency varies among samples, the metrics weight samples with 

the greatest uncertainty the most. Many common deterministic verification metrics such 

as threat scores are prone to misreporting skill, and probabilistic forecast metrics such as 

the Brier skill score and relative operating characteristic can also be affected.  

Demonstrations of this effect are provided using synthetic and real weather forecast data, 

and guidelines are suggested for how to adjust computations to minimize these effects. 

 

 

 

Keywords:  forecast verification, ensemble forecasting, probabilistic weather forecasts, 

equitable threat score, relative operating characteristic, Brier skill score, contingency 

tables 
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1. Introduction 

 
 This article will demonstrate that many commonly used weather forecast verification 

metrics are capable of reporting positive forecast skill in situations where the meteorologist 

would assume none truly exists, or the metrics may report different skill than expected.    

Depending on the metric and the situation, this effect can be large or small.  The unexpected 

skill is a consequence of inappropriately pooling data over subsets with different 

climatologies. 

 Our interest in this topic resulted from using conventional verification metrics and 

diagnosing unexpectedly large skill.  For example, the first author used a common 

probabilistic metric, the relative operating characteristic, in a comparison of ensemble 

forecast methods (Hamill et al. 2000, Fig. 13).  The author reported a relative operating 

characteristic curve for wind speed forecasts at 5 days lead that indicated a highly skillful 

forecast, different than experience would suggest for this lead time.  The second author 

discussed the unexpectedly large forecast skill (Juras 2000) in a comment on a Buizza et al. 

(1999) article. It was indicated that the chosen metrics might report unexpectedly large skill 

if climatological event frequencies vary within the verification area.  This issue was also 

raised in Mason (1989) and less directly in other meteorological publications, including 

Buizza (2001; p. 2335), Stefanova and Krishnamurti (2002, p. 543), Atger (2003), Glahn 

(2004; p. 770), and Göber et al. (2004).  Still, there are many published articles that may have 

applied common verification metrics, incorrectly assuming that the conventional method of 

calculation would result in zero skill for the reference, random climatological forecasts 

(including two by the lead author, Hamill 1999 and Hamill et al. 2000).   
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 Here, section 2 will provide a brief review of the three chosen metrics that may be 

subject to misestimating skill, the Brier skill score (Wilks 1995, p. 260), the relative 

operating characteristic (Swets 1973, Harvey et al. 1992), and the equitable threat score 

(Schaefer 1990). Many other metrics such as the ranked probability skill score (Epstein 1969, 

Murphy 1971, Wilks 1995, p. 272), economic value diagrams (Richardson 2000, Palmer et 

al. 2000, Richardson 2001b, Zhu et al. 2002, and Buizza et al. 2003), and other contingency-

table based threat scores will not be discussed but can be subject to the same effect.  In 

addition to describing the conventional method of calculation of these metrics, Section 2 will 

also describe possible improved methods of calculation.  Section 3 follows with simple 

examples of how unexpected skill can be diagnosed from synthetic weather data when using 

the conventional methods of calculation.  Section 4 demonstrates how large the mis-

estimation effect can be for a common real-weather verification problem, the threat scores of 

short-range precipitation forecasts.  Section 5 concludes with a discussion of the implications 

and how to adapt verification strategies to minimize or avoid this effect. 

 
2. Review of three common verification metrics 
 
 
 Below, three general verification metrics are reviewed, the Brier skill score, relative 

operating characteristic, and the equitable threat score. 

 The long-used Brier score (Brier 1950) is a measure of the mean-square error of 

probability forecasts for a dichotomous (two-category) event, such as the occurrence/non-

occurrence of precipitation.  A review is provided in Wilks (1995, p. 259), and references 

therein provide further background.   The Brier score is often converted to a skill score, its 

value normalized by the Brier score of a reference forecast such as climatology (ibid).  A 
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Brier skill score (BSS) of 1.0 indicates a perfect probability forecast, while a BSS of 0.0 

should indicate the skill of the reference forecast (see Mason 2004 for further discussion of 

whether a BSS of 0.0 indicates no skill).   

 The relative operating characteristic (ROC) has gained widespread acceptance in the 

past few years as a metric for probabilistic weather forecast verification.  The ROC has been 

used for decades in engineering, biomedical, and psychological applications; see an overview 

in Swets (1973).   Its application in meteorology was proposed in Mason (1982), Stanski et 

al. (1989), and Harvey et al. (1992).  The ROC was recently made part of the World 

Meteorological Organization’s (WMO) standard (WMO, 1992).  Characteristics of the ROC 

have been discussed in Buizza et al. (1998), Mason and Graham (1999, 2002), Juras (2000), 

Wilson (2000), Buizza et al. (2000ab), Wilks (2001), Kheshgi and White (2001), Kharin and 

Zwiers (2003), and Marzban (2004).  The technique has been used to diagnose ensemble 

forecast accuracy in, for example, Buizza and Palmer (1998), Buizza et al. (1999), Hamill et 

al. (2000), Palmer et al. (2000), Richardson (2000, 2001ab), Wandishin et al. (2001), Ebert 

(2001), Mullen and Buizza (2001, 2002), Bright and Mullen (2002), Yang and Arritt (2002), 

Legg and Mylne (2004), Zhu et al. (2002), Toth et al. (2003), and Gallus and Segal (2004). 

Harvey et al. (1992) provide a thorough review of the concepts underlying the ROC. 

 The equitable threat score (ETS) provides one of many ways of summarizing the 

ability of a deterministic forecast to correctly forecast a dichotomous (two-category) 

event.  The ETS will produce a score of 1.0 for a perfect forecast, and random forecasts 

should be assigned a value of 0.0.  The ETS is commonly used to evaluate the skill of 

forecasts, especially precipitation.  See, for example, Rogers et al. (1995, 1996), Hamill 
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(1999), Bayler et al. (2000), Stensrud et al. (2000), Xu et al. (2001), Ebert (2001), Gallus 

and Segal (2001), Chien et al. (2002), and Accadia et al. (2003). 

 The methods for computing these metrics are now discussed, starting with the 

probabilistic metrics.  The BSS and ROC will be generated from ensemble forecasts, 

though they can be generated from any probabilistic forecast.  

 Start by defining a dichotomous event of interest, such as occurrence/non-

occurrence of precipitation, or temperature above or below a threshold.  Let Xe(j) = 

[X1(j), … , Xn(j)] be an n-member ensemble forecast of the relevant scalar variable (again, 

precipitation or temperature) for the jth of m samples (taken over many case days and/or 

locations).  The ensemble at that day and location is first sorted from lowest to highest.  

This sorted ensemble is then converted into an n-member binary forecast Ie(j) = [I1(j), … 

, In (j)] indicating whether the event was forecast (= 1) or not forecast (= 0) by each 

member.  The observed weather is also converted to binary, denoted by Io(j).  

 
(a)  Brier skill scores 

 Assuming that each member forecast is equally likely, a forecast probability pf (j) 

for the jth sample is calculated from the binary ensemble forecasts:  

 pf j( ) =
Ii ( j)i=1

n

!
n

  .      (1) 

The Brier score of the forecast BSf is calculated as 

 BSf = pf ( j) ! Io( j){ }
2

j=1

m

"  .      (2) 

A Brier skill score (BSS) is commonly calculated as  

 
 

BSS = 1!
BSf

BSc
        (3) 
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where BSc is the Brier score of the reference probability forecast, commonly the 

probability of event occurrence from climatology.    

 Ideally, the climatological probabilities would be determined from independent 

data, but commonly they are calculated from the sample observed data. In the 

conventional method of calculation, an average climatology pc is used:  

 p
c
=

I
o
j( )

j=1

m

!

m
 ,        (4) 

in which case the reference Brier score of climatology used in eq. (3) is 

 BSc = pc ! Io j( ){ }
j=1

m

"
2

 .      (5) 

 However, perhaps the climatological event frequency is known to vary among the 

m samples.  For example, perhaps the climatology can be assumed to be fixed for all 

samples at a given location, or for all locations on a given date, or some yet more 

complex relationship.  In any case, suppose the samples could be split up into nc subsets, 

each with a distinct climatological event frequency. Let pc(k) be the climatological event 

frequency in the kth of the nc subsets. Also, let there be ns(k) samples in this subset, and 

let  rk = [r(1) , … , r(ns(k))] be the associated set of sample indices from the m samples.  

Then the Brier score of climatology is calculated separately for each subset with a 

different climatology: 

 
 
BSc k( ) = pc k( )! Io l( ){ }

2

l=r(1)

r(ns (k ) )

"  .     (6) 

A possible alternative calculation of BSc would then be  

 BS
c
= BS

c

k=1

nc

! k( ) ,        (7) 
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and the BSS is calculated following eq. (3). 

 A third possible alternative for calculating the BSS would be to calculate the Brier 

Score of the forecasts separately for the different climatological subsets, as for the 

climatology in eq. (6): 

 
 
BSf k( ) = pf l( )! Io l( ){ }

2

l=r(1)

r(ns (k ) )

" .      (8) 

Then the BSS is computed as a sample-weighted average of the skill scores for each 

distinct climatological regime: 

 
 

BSS =
ns k( )
mk=1

nc

! 1"
BSf k( )

BS c k( )

#

$

%%%%

&

'

(((((
.      (9) 

 
(b) ROC diagrams 

 The conventional method of calculation of the ROC from ensembles typically 

starts with the population of 2x2 contingency tables, with separate contingency tables 

tallied for each sorted ensemble member.   The contingency table for the ith sorted 

ensemble member has four elements: Γi = [ ai, bi, ci, di], indicating the fraction of hits, 

misses, false alarms, and correct rejections (Table 1).  The contingency table is populated 

using data over all m samples, and then each is normalized so the sum of the elements is 

1.0.   

 The hit rate (HR) for the ith sorted member forecast is defined as  

 

 HR
i
=

a
i

a
i
+ b

i

.         (10) 

 

Similarly, the false alarm rate is defined as 
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 FAR
i
=

c
i

c
i
+ d

i

.        (11) 

 

This prototypical ROC is a plot of HRi  (ordinate) vs. FARi , i = 1, … , n. A ROC curve 

that lies along the diagonal HR=FAR line is commonly believed to indicate no skill; a 

curve that sweeps out maximal area, as far toward the upper left corner as possible, is 

believed to indicate maximal skill.  The ROC is commonly summarized through the 

integrated area under the ROC curve, or AUC.  A perfect forecast has an AUC of 1.0, and 

climatology is presumed to provide an AUC of 0.5.   In order to calculate the AUC, for 

the n-member ensemble let us assume the existence of fictitious zeroth and n+1th 

ensemble members to provide boundary conditions HR0 = 0.0, FAR0 = 0.0, HRn+1 = 1.0, 

and FARn+1 = 1.0.  Then an approximate integral AUC can be calculated as 

 

 
 
AUC =

FAR
i
! FAR

i!1( ) HR
i

+ HR
i!1( )

2i=1

n+1

"     (12) 

 
 However, suppose that the climatological event frequency varies among the 

samples.  An alternative ROC AUC can be formulated that partitions the overall sample 

up into subgroups with distinctly different climatologies.  As with the BSS, we suppose 

the samples can be partitioned into nc subsets, each associated with a distinct 

climatological event frequency. Using the ns(k) samples, the hit rates and false alarm rates 

for the kth climatology are 

 
 

HR
i
k( ) =

a
i
k( )

a
i
k( ) + b

i
k( )

       (13) 

and 
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FAR
i
k( ) =

c
i
k( )

c
i
k( ) + d

i
k( )

.       (14) 

From this, the area under the ROC curve for the kth subset can be calculated in a manner 

analogous to eq. (12), providing AUC (k).   Then, as was done with the BSS, a sample-

weighted AUC  is calculated according to  

 
 
AUC =

n
s
k( )
mk=1

nc

! AUC k( )         (15) 

 
(c)  Equitable threat score 

 
 Assume now that we are evaluating deterministic forecasts rather than ensembles.  

The conventional method of calculating the ETS assumes Table 1 is populated with all 

the samples available (here we drop the i subscript in Table 1 denoting the ensemble 

member number).  The equation for the ETS is 

 ETS =
a ! a

r

a + b + c ! a
r

,        (16) 

where ar is the expected fraction of correct forecasts for a random forecast 

 
 a

r
= a + c{ } a + b{ } .        (17) 

 
 As with the other scores, we consider the possibility of different regions with 

different climates.  Again, assume we have nc contingency tables, each associated with 

samples with a distinct climatological event frequency.   The ETS is calculated separately 

for each contingency table, and an alternative, sample-weighted ETS is calculated as 

 
 
ET S =

n
s
k( )
m

ETS k( )
k=1

nc

!        (18) 
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3. Example of skill overestimation: synthetic data at two independent locations 

 
 Using synthetic data, we now illustrate two general problems with verification 

metrics calculated in the conventional manner.  First, they may report skill even when the 

forecasts are samples from the reference, no-skill climatology. Second, when the 

climatological event frequency varies, the skill scores will reflect an uneven weighting of 

the sample data. 

 
(a)  Positive skill diagnosed from climatological forecasts. 

 
 Suppose a hypothetical planet was covered by a global ocean interrupted only by 

two small, isolated islands, and suppose island weather forecasting was utterly impossible 

on this planet; the best one can do was to forecast the climatological probability 

distribution appropriate to each island.  Given that the weather appears random to 

residents on each island, one would expect that a skill score should report zero skill, a 

desired attribute that is part of the property known as “equitability” (Gandin and Murphy 

1992, Wilks 1995 p. 250). 

 To simulate this scenario, assume that at island 1, the daily maximum temperature 

was randomly sampled from its fixed climatological distribution ~ N(+α, 1), that is, the 

temperature was a draw from a normal distribution with a mean of α and a standard 

deviation of 1.0.  At island 2, the daily maximum temperature ~ N(-α, 1).  A hundred-

member ensemble of weather forecasts was generated by taking random draws from each 

island’s climatology.  Forty thousand days of weather and ensemble forecasts were 

simulated, and we consider the event that the temperature was greater than 0.  On island 
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1, both verification and ensemble ~ N(+α, 1) and were drawn independently.  The same 

process was repeated for island 2, but verification and ensemble ~ N(-α, 1).   We then 

examine the skill scores as α changes, as the two islands’ climatologies grow 

increasingly different.   

 Figure 1 synthesizes the forecasts scores’ overestimate as a function of α  when 

the data was pooled.  Here the Brier skill score was calculated by computing the 

climatology by eqs. (6) – (7), the ROC AUC was calculated using eqs. (10) – (12), and 

the ETS was calculated using eqs. (16) – (17).  Hereafter, these will be called “the 

conventional methods” of calculation.  As α was increased, the diagnosed forecast skill 

increased as well, even though the ensemble was always randomly drawn from each 

island’s climatology.    

 What was the source of the skill estimates being larger than expected?  For each 

of these scores, the computation no longer implicitly assumed that the climatological 

distribution was ~ N(+α, 1)  at island 1 and  ~ N(-α, 1) at island 2, the same distribution 

from which the forecasts were drawn.  Rather, it implicitly assumed that the 

climatological distribution was ~ 0.5 • N(+α, 1) +0.5 • N(-α, 1) for both islands, a 

bimodal distribution when α was large with a fixed mean event probability of 0.5 

independent of α.  Hence as α increased, the randomly drawn forecasts became 

increasingly sharp relative to this nonspecific composite climatology.  The random 

forecasts from each island were awarded higher and higher scores based merely on the 

increasing differences in the two islands’ mean temperatures, not through any intrinsic 

improvement in forecast skill.  This illustrates that these scores may report unexpectedly 
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large skill in situations where the climatologies differ among the samples used to 

populate the contingency tables; they credit a forecast with having skill when the 

climatologies of the individual samples are different from the climatology of the 

combined samples.  The more the climatologies differ, the larger the diagnosed skill. 

 If there actually was some true positive skill in each island’s forecast, quantifying 

this would have been difficult; the actual skill and diagnosed amount introduced by 

differences in climatology would have been mixed together. Backing out the true skill in 

this example would have been impossible unless the value of α was also known.  Skill 

overestimation of the sort demonstrated in Fig. 1 also makes it more difficult to evaluate 

potential forecast improvements.   When α was very large, a forecast was scored as 

nearly perfect regardless of whether or not the forecast actually was nearly perfect.   The 

difference between good and mediocre forecasts is thus shrunk, complicating the task of 

evaluating whether one model was better than another.   

 Consequently, the preferred course of action when climatology varies is to 

analyze the data separately for each climatological regime.  A similar and more general 

conclusion was arrived at in the classic paper on “Simpson’s Paradox” (Simpson 1951; 

see comment 7 on second-order interactions1). Cochran (1954) also is unambiguous with 

regards to inferences from contingency tables: 

“One method that is sometimes used is to combine all the data into a single 2x2 

table … this procedure is legitimate only if the probability p of an occurrence (on 

the null hypothesis) can be assumed to be the same in all the individual 2x2 
                                                
1 Simpson actually asserts something even more rigorous; contingency-table data can be 
added only when there are no “second-order interactions” in the contingency tables.   
These interactions may occur due to differences in climatological event frequency, but 
they also may occur in situations where the forecast skills were different between the 
subsets.  
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tables.  Consequently, if p obviously varies from table to table, or we suspect that 

it may vary, this procedure should not be used.” 

 

Cochran also proposed a statistical test to determine if contingency table data can be 

added; Mantel and Haenszel (1959) proposed a related test, and Agresti (2002, p. 231) 

provided a summary.   Unfortunately, the Cochran and Mantel-Haenszel tests may be 

difficult to apply in meteorological verification, for one of the underlying assumptions is 

that the samples used to populate the contingency tables are independent.   In 

meteorological verification, two samples may come from adjacent grid points that will in 

fact have correlated errors. 

 The meteorological statistician may still desire a single-number summary of the 

skill of the forecast.   To preserve the desirable property of ensuring that random draws 

from the no-skill reference are evaluated as having null skill, the method of calculating 

the skill scores could be reformulated or the problem could be transformed to eliminate 

the effect of the varying climatology.  For example, had the BSS been calculated with eqs. 

(3), (6), and (7) or (3), (6), (8), and (9), had the ROC AUC been calculated with eqs. (13) 

– (15), and had the ETS been calculated separately at each island and then averaged using 

eq. (18), the reported scores would have been zero within sampling error.  Another way 

to report the expected zero skill would be to change the test threshold to one where the 

climatological event frequencies are identical among sub-samples.  For example, change 

the test threshold from “temperature greater than zero” to “exceeding the 50th percentile 

of each individual island’s climatological distribution.” Of course, reformulating the 

verification problem in this manner may not answer the underlying question asked by the 

researcher.
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(b) Skill contributions weighted toward samples with larger observed uncertainty. 

 
 Our two-island scenario is now changed; consider the event that the daily 

maximum temperature was greater than 2.0.  Island 1’s observed maximum temperature 

was randomly drawn from a N(0,1) distribution, the forecasts were also ~ N(0,1), and 

forecast and observations were uncorrelated.  On island 2, the observed and forecast 

temperatures were drawn from N(0,β) distributions, and forecast and observed were 

correlated at 0.9. β varied between 1 and 3.  As β increased, at island 2 the forecast and 

observed event frequency increased (Fig. 2).  Ideally, the reported skills would not 

change much as β changed, for the forecast-observed correlation never changed even 

though island 2’s spread changed.  However, this experimental setup will illuminate how 

samples with different underlying climatological uncertainty can be unequally weighted, 

affecting the computation of skill. 

 Figure 3 shows that when the skills were calculated using the conventional 

methods, skill increased as the climatological event frequency increased on island 2 (i.e., 

β increased).    Figure 4 provided some evidence behind why this happened.  As β 

increased, the conventional methods more heavily weighted the contribution from island 

2.   An examination of contingency tables for deterministic forecasts illuminates why the 

overall skill was more heavily weighted toward island 2’s contribution (Tables 2 – 4). 

Table 2 reports island 1’s contingency table, Table 3 reports island 2’s when β = 1, and 

Table 4 reports island 2’s when β = 3.  The ETS for island 1 alone was  -0.0022, the ETS 

for island 2 and β = 1 is 0.4195, and the combined ETS when β = 1 was 0.193, nearly 

equally weighting the two islands’ contributions.  Note that when β = 1 the climatological 
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event frequency was 0.0232 at island 1 and 0.0288 at island 2, very similar.  However, 

for β = 5, the climatological event frequency at island 2 was 0.26, and its ETS was 0.532.    

The combined ETS for β = 5 was 0.499, much closer to that of island 2 than 1. The 

unequal weighting is illuminated by considering the sums of the contingency tables.  

Note for example that the “hits” in the combined table for β = 5 (combining Tables 2 and 

4) were determined almost exclusively by the hits from island 2, which contributed more 

than 98 percent. 

 This second example showed another undesirable property of the conventional 

method of calculating verification scores, namely that the weighting of samples is related 

to the observed event frequency.    The solutions proposed in the previous example are 

applicable here as well, with one exception.  In this example the calculation of the BSS  

cannot be fixed by defining BSc using eq. (7); it will yield a similar result to when eq. (5) 

is used.  Equation (7) will still effectively weight the samples with greater climatological 

uncertainty higher than samples with less climatological uncertainty.  Equation (9) thus 

must be used to calculate BSS. 

 
4.  Example of skill overestimation: equitable threat scores for numerical 

precipitation forecasts 

 
 Here we demonstrate that the ETS for real precipitation forecasts is subject to the 

same overestimation problem as with the synthetic data.  The ETS is commonly used by 

the US National Weather Service to evaluate the skill of their deterministic precipitation 

forecasts.  Typically, the ETS is estimated at fixed precipitation thresholds from a single 
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contingency table populated over many days or months and over a wide geographic 

region such as the conterminous USA.    

 To demonstrate the tendency to report a larger-than-expected ETS, a very large set 

of numerical forecasts was used.  These forecasts were generated using the analog 

forecast technique discussed in Hamill et al. (2006).  The details of the forecast 

methodology can be found in this reference but are not particularly important here.  What 

is relevant is that a 25-year time series of gridded deterministic precipitation forecasts 

was produced, all using the same model and forecast technique.  These forecasts have 

characteristics similar to those of current operational forecasts.  For this demonstration, 

we limit ourselves to considering the ETS of the mean of a 5-member ensemble of analog 

forecasts over the conterminous USA for January and February from 1979 to 2003.    

Both the forecast and the verification data (from the North American Regional 

Reanalysis, Mesinger et al. 2005) are on a ~32 km grid.  We consider the 5-mm 

precipitation threshold. 

 Figure 5a illustrates the geographic dependence of the ETS on forecast location. 

Threat scores were much larger in the southeast USA and along the West Coast than in 

the northwestern Great Plains.   Figure 5b provides the climatological event frequency of 

greater than 5 mm rain in the 24-h period.  Note the strong relationship between the ETS 

and the event frequency, a characteristic previously described for a similar skill score in 

Mason (1989) and for the ETS in Göber et al. (2004). 

 Perhaps a user requires the information to be condensed to a single number to 

facilitate comparison between two different forecast models.  The ETS calculated from 

the contingency table sum using eq. (16) was approximately 0.415.  However, examining 
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Fig. 5a, it was apparent that the large majority of grid points had ETS much below 0.415, 

suggesting again that the ETS reported a larger-than-expected score.  When calculated 

using eq. (18) after binning the climate into 6 categories, the weighted-average ETS was 

much smaller, 0.28 (Fig. 6). 

 The ETS estimation technique of eq. (18) has drawbacks.  Notably, the 

climatological event probability was defined by the sample event probability  a + b , a 

reasonable assumption in this example with over two decades of winter forecast data, a 

very large sample.  If the verification period is very short, then this sample event 

probability may be a poor estimate of the true long-term event probability.  Ideally a 

long, temporally and spatially dependent climatology should be used, if available.  If this 

were not possible, cross-validation techniques could be used to isolate the data being 

verified from the data being used to define the climatological event frequency.  

Nonetheless, these details should not obscure the main point: a substantially larger-than-

expected threat score is possible when contingency table values are summed across grid 

points with different climatologies. 

 
5.  Conclusions 

 
 The preceding examples have demonstrated that the Brier skill score, relative 

operating characteristic, and the equitable threat score must be interpreted with care when 

verifying weather forecasts. These metrics, when conventionally applied, may report 

different skill than one would expect in situations where the climatological event 

frequency differs between sample locations. The more the event frequencies differ, the 

more the skill may be misestimated.  By logical extension, skill may also be misestimated 
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if the verification samples span different seasons or even different times of the day with 

different climatologies but the data are still composited.  Other scores such as the ranked 

probability skill score and other contingency-table based scores are subject to the same 

tendency.  These overestimates can complicate the evaluation of model performance.  

Are two models nearly equal in their large skill because they’re both providing high-

quality forecasts? Or are they actually less skillful, and are differences in skill obscured 

by fictitious added skill from the varying climatology? 

 One primary reason why skill scores have been calculated as sums over sets with 

varying climatologies is that the sample size of the forecasts and observations may be 

small.  If independent observational data is not available to define the climatological 

event frequency for sub-samples, then this must be estimated from the same data used for 

model verification, potentially causing two problems.  First, the small sample size may 

result in large errors in estimating the climatological event frequency. Second, unless the 

observational data used to define the climatology is separated from the observational data 

used for forecast verification to preserve independence (cross validation), the forecast 

error may be underestimated since the climatology will increasingly resemble the 

observed data as sample size decreases.    

 Clearly, skills of the statistical meteorologist will be put to the test when data is 

limited. While each situation may be different, the intent should at least be to design the 

verification method to minimize the reported increase in skill introduced by varying 

climatologies, making at least relative inferences of skill (is model A more skillful than 

model B?) more trustworthy.   
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 We propose two changes that both address the tendency for misestimating skill.  

First, consider altering the verification methodology. If sample sizes are large enough, 

perform the calculations separately each for sub-sample with similar climatological event 

frequencies, as in section 4. Second, consider estimating skills for alternative events 

where the climatological event frequencies are the same for all samples, such as the 

exceedance of a quantile of the local climatological distribution (e.g., Buizza et al. 2003, 

Fig. 5, or Zhu et al. 2002). Then regardless of whether the climatological means and 

variances are large or small, the fraction events classified as “yes” events then are 

identical for different locations or times of the year.  

 Another recommendation is that the specific details regarding how the verification 

metrics are calculated should be fully described in journal articles and texts, since minor 

changes in the methodology can dramatically change the reported scores.  Finally, 

whatever the chosen verification metric, it is prudent to verify that climatological 

forecasts report the expected no-skill result before proceeding.  
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the difference in the means of the distributions between the two islands. 

 

Figure 2:  Illustration of experimental design (section 3b).  Weather forecasts are 

simulated at two islands, the first island with uncorrelated forecasts and observations, the 

second island with forecasts and observations correlated at 0.90.  The observed and 

forecast data are normally distributed with zero mean.  The standard deviation β is fixed 

at 1.0 for island 1 and varies between 1 and 3 at island 2.  (a) β = 1.0, (b) β = 3.0.  Dotted 

line indicates the event threshold (observed temperature greater than 2.0).  The three 

contours enclose 90, 50, and 10 percent of the probability density, respectively. 

 

Figure 3: ROC AUC, BSS, and ETS for the experiment in section 3(b) when using the 

conventional methods of calculation. 

 

Figure 4:  (a) BSS, (b) ETS, and (c) ROC AUC at individual islands and when combined 

using the conventional methods for experiment in section 2(b). 

 

Figure 5:  (a): ETS for 1-2 day (24-48 h) 5 mm precipitation forecasts as a function of 

location, using Jan-Feb 1979-2003 forecast and  analyzed data. (b) Climatological 

probability of precipitation greater than 5 mm for Jan-Feb. 
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Figure 6:  Histogram of ETS of 5-mm forecasts when for subsets of samples divided into 

six categories based on the climatological probability of event occurrence.  The fraction 

of the grid points occurring in a given bin are reported in parentheses.  Dashed lines 

indicate the ETS calculated using the conventional method (eq. (16)) and the population-

weighted average (eq (18)). 
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difference in the means of the distributions between the two islands.  
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Figure 2:  Illustration of experimental design (section 3b).  Weather forecasts are 
simulated at two islands, the first island with uncorrelated forecasts and observations, the 
second island with forecasts and observations correlated at 0.90.  The observed and 
forecast data are normally distributed with zero mean.  The standard deviation β is fixed 
at 1.0 for island 1 and varies between 1 and 3 at island 2.  (a) β = 1.0, (b) β = 3.0.  Dotted 
line indicates the event threshold (observed temperature greater than 2.0).  The three 
contours enclose 90, 50, and 10 percent of the probability density, respectively. 
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Figure 3: ROC AUC, BSS, and ETS for the experiment in section 3(b) when using the 
conventional methods of calculation. 
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Figure 4:  (a) BSS, (b) ETS, and (c) ROC AUC at individual islands and when combined 
using the conventional methods for experiment in section 2(b). 
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Figure 5:  (a): ETS for 1-2 day (24-48 h) 5 mm precipitation forecasts as a function of 
location, using Jan-Feb 1979-2003 forecast and  analyzed data. (b) Climatological 
probability of precipitation greater than 5 mm for Jan-Feb. 
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six categories based on the climatological probability of event occurrence.  The fraction 
of the grid points occurring in a given bin are reported in parentheses.  Dashed lines 
indicate the ETS calculated using the conventional method (eq. (16)) and the population-
weighted average (eq (18)). 
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     Event forecast by ith member?  

     YES    NO 
   ------------------------------------------------------------------------ 
  YES |  ai   |  bi    | 
Event   |    |    | 
Observed?  |---------------------------------- | ---------------------------------- | 
  NO |  ci   |  di   | 
   |           |           |  
   ------------------------------------------------------------------------ 
 
 
Table 1:  Contingency table for the ith of the n sorted members at the jth location, 
indicating the relative fraction of hits [ai], misses [bi], false alarms [ci], and correct 
rejections [di].    
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       Event forecast  

    YES   NO 
   ------------------------------------------------------- 
  YES | 0.004  | 0.0228   | 
Event   |   |   | 
Observed?  |-------------------------- | ------------------------- | 
  NO | 0.0223  | 0.954  | 
   |          |          |  
   ------------------------------------------------------- 
 
Table 2: Contingency table for island 1 in experiment in section 3 (b).  The observed 
event frequency is 0.0232 and the ETS is – 0.0022. 
 
 
       Event forecast  

    YES   NO 
   ------------------------------------------------------- 
  YES | 0.0171  | 0.0117   | 
Event   |   |   | 
Observed?  |-------------------------- | ------------------------- | 
  NO | 0.0108  | 0.9603  | 
   |          |          |  
   ------------------------------------------------------- 
 
Table 3: Contingency table for island 2 in experiment in section 3 (b) when β = 1.0.  The 
observed event frequency is 0.0288 and the ETS is +0.4195. 
 
 
       Event forecast  

    YES   NO 
   ------------------------------------------------------- 
  YES | 0.2022  | 0.0578   | 
Event   |   |   | 
Observed?  |-------------------------- | ------------------------- | 
  NO | 0.0597  | 0.6802  | 
   |          |          |  
   ------------------------------------------------------- 
 
Table 4: Contingency table for island 2 in experiment in section 3 (b) when β = 3.0.  The 
observed event frequency is 0.26 and the ETS is +0.5327. 
 
 


